Handwritten Arabic Characters Recognition using a Hybrid Two-Stage Classifier
نویسندگان
چکیده
منابع مشابه
Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model
In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...
متن کاملOn-line Recognition of Arabic Handwritten Characters
In this study, a new approach for the recognition of isolated handwritten Arabic characters is presented. The proposed method places a 5x5 grid on the character to extract the features needed for the recognition step. These features are calculated based on grid calculations. Then these features are feed to the decision tree to classify the character into one of the 28 classes. The classificatio...
متن کاملArabic Handwritten Characters Recognition using Convolutional Neural Network
Handwritten Arabic character recognition systems face several challenges, including the unlimited variation in human handwriting and large public databases. In this work, we model a deep learning architecture that can be effectively apply to recognizing Arabic handwritten characters. A Convolutional Neural Network (CNN) is a special type of feed-forward multilayer trained in supervised mode. Th...
متن کاملRecognition of secondary characters in handwritten Arabic using Fuzzy Logic
Arabic language is characterized by extensive use of dots or secondary characters associated with main body or primary characters. More than half of the Arabic characters can only be distinguished by these secondary characters. Hence recognition of these characters has a vital importance in Arabic OCR. In printed text the problem is much easier than handwritten text because of the variety of sh...
متن کاملRecognition of Off-Line Handwritten Devnagari Characters Using Quadratic Classifier
Recognition of handwritten characters is a challenging task because of the variability involved in the writing styles of different individuals. In this paper we propose a quadratic classifier based scheme for the recognition of offline Devnagari handwritten characters. The features used in the classifier are obtained from the directional chain code information of the contour points of the chara...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advanced Computer Science and Applications
سال: 2020
ISSN: 2156-5570,2158-107X
DOI: 10.14569/ijacsa.2020.0110619